
OpenMM

 Application Guide
 Release 4.1

April 5, 2012
 Website: simtk.org/home/openmm

OpenMM Application Guide

Authors

Peter Eastman

Copyright and Permission Notice

Portions copyright (c) 2011, 2012 Stanford University and the Authors
Contributors: Peter Eastman, Mark Friedrichs

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"),
to deal in the Document without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Document, and to permit persons to whom the
Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS,
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
OR IN CONNECTION WITH THE DOCUMENT OR THE USE OR OTHER DEALINGS IN THE DOCUMENT.

v

Acknowledgments

OpenMM software and all related activities, such as this manual, are funded by the Simbios

National Center for Biomedical Computing through the National Institutes of Health

Roadmap for Medical Research, Grant U54 GM072970. Information on the National

Centers can be found at http://nihroadmap.nih.gov/bioinformatics.

Table of Contents

1	
 INTRODUCTION ..8	

1.1	
 Online Resources .. 9	

1.2	
 Referencing OpenMM... 9	

2	
 INSTALLING OPENMM ... 10	

2.1	
 Installing on Mac OS X ..10	

2.2	
 Installing on Linux...12	

2.3	
 Installing on Windows... 13	

3	
 RUNNING SIMULATIONS.. 16	

3.1	
 A First Example..16	

3.2	
 Using AMBER Files ...19	

3.3	
 Simulation Parameters ... 20	

3.3.1	
 Force Fields ... 20	

3.3.2	
 AMBER Implicit Solvent .. 22	

3.3.3	
 Nonbonded Interactions .. 24	

3.3.4	
 Constraints ... 26	

3.3.5	
 Integrators ..27	

3.3.6	
 Temperature Coupling... 29	

3.3.7	
 Pressure Coupling .. 29	

3.3.8	
 Energy Minimization... 30	

3.3.9	
 Removing Center of Mass Motion ..31	

3.3.10	
 Writing Trajectories..31	

3.3.11	
 Recording Other Data .. 32	

4	
 MODEL BUILDING AND EDITING...33	

4.1	
 Adding Hydrogens .. 33	

4.2	
 Adding Solvent.. 34	

4.3	
 Converting Between Water Models .. 36	

4.4	
 Removing Water ... 36	

4.5	
 Saving The Results.. 36	

5	
 ADVANCED EXAMPLES ..38	

vii

5.1	
 Simulated Annealing... 38	

5.2	
 Applying an External Force to Particles: a Spherical Container.. 39	

5.3	
 Extracting and Reporting Forces (and other data) ..40	

5.4	
 Computing Energies.. 42	

6	
 CREATING FORCE FIELDS ..44	

6.1	
 Basic Concepts... 44	

6.1.1	
 Atom Types and Atom Classes.. 44	

6.1.2	
 Residue Templates .. 45	

6.1.3	
 Forces .. 45	

6.2	
 Writing the XML File .. 45	

6.2.1	
 <AtomTypes>.. 46	

6.2.2	
 <Residues> ... 46	

6.2.3	
 <HarmonicBondForce>...48	

6.2.4	
 <HarmonicAngleForce> ..48	

6.2.5	
 <PeriodicTorsionForce> .. 49	

6.2.6	
 <RBTorsionForce>... 50	

6.2.7	
 <CMAPTorsionForce> ..51	

6.2.8	
 <NonbondedForce>.. 52	

6.2.9	
 <GBSAOBCForce> ... 52	

6.2.10	
 <CustomBondForce>.. 53	

6.2.11	
 <CustomAngleForce>... 54	

6.2.12	
 <CustomTorsionForce>.. 54	

6.2.13	
 <CustomGBForce> ... 56	

6.2.14	
 Writing Custom Expressions.. 57	

6.3	
 Using Multiple Files .. 58	

6.4	
 Extending ForceField .. 59	

7	
 BIBLIOGRAPHY... 61	

1 Introduction

OpenMM consists of two parts:

1. A set of libraries that lets programmers easily add molecular simulation features to

their programs

2. An “application layer” that exposes those features to end users who just want to run

simulations

This guide describes the application layer. If you are not a programmer, but you want to run

simulations with OpenMM, this guide is for you. If you are a programmer, this guide may

still be for you; keep reading to see what OpenMM can do for you.

The first thing to understand is that the OpenMM “application layer” is not exactly an

application in the traditional sense: there is no program called “OpenMM” that you run.

Rather, it is a collection of libraries written in the Python programming language. Those

libraries can easily be chained together to create Python programs that run simulations. But

don’t worry! You don’t need to know anything about Python programming (or programming

at all) to use it. Nearly all molecular simulation applications ask you to write some sort of

“script” that specifies the details of the simulation to run. With OpenMM, that script

happens to be written in Python. But it is no harder to write than those for most other

applications, and this guide will teach you everything you need to know.

On the other hand, if you don’t mind doing a little programming, this approach gives you

enormous power and flexibility. Your script has complete access to the entire OpenMM

application programming interface (API), as well as the full power of the Python language

and libraries. You have complete control over every detail of the simulation, from defining

the molecular system to analyzing the results.

9

1.1 Online Resources

You can find more documentation and other material at our website

http://simtk.org/home/openmm. Among other things there is a discussion forum and

several mailing lists with archives.

1.2 Referencing OpenMM

Any work that uses OpenMM should cite the following publication:

M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. LeGrand, A. L. Beberg, D. L.

Ensign, C. M. Bruns, V. S. Pande. “Accelerating Molecular Dynamic Simulation on Graphics

Processing Units.” J. Comp. Chem., 30(6):864-872 (2009).

We depend on academic research grants to fund the OpenMM development efforts; citations

of our publication will help demonstrate the value of OpenMM.

2 Installing OpenMM

Detailed installation instructions are found in chapter 3 of the OpenMM Users Guide. What

follows is a simplified version of those instructions. They should be sufficient for most cases,

but if you run into problems, consult the Users Guide. There also is an online

troubleshooting guide that describes common problems and how to fix them

(http://wiki.simtk.org/openmm/FAQApp).

2.1 Installing on Mac OS X

OpenMM works on Mac OS X 10.6 or later. It may also work on 10.5, but it has not been

tested, and the OpenCL platform (which enables you to run accelerated calculations using

OpenCL-supporting GPUs) will not be available.

1. Download the pre-compiled binary of OpenMM for Mac OS X, then double click the .zip

file to expand it.

2. If you have not already done so, install Apple’s Xcode developer tools from the App Store.

They are required to use OpenMM. (With Xcode 4.3 and later, you must then launch Xcode,

open the Preferences window, go to the Downloads tab, and tell it to install the command

line tools. With Xcode 4.2 and earlier, the command line tools are automatically installed

when you install Xcode.)

3. Launch the Terminal application. Change to the OpenMM directory by typing

cd <openmm_directory>

where <openmm_directory> is the path to the OpenMM folder. Then run the install script

by typing

11

sudo ./install.sh

It will prompt you for an install location and the path to the python executable. Unless you

are certain you know what you are doing, accept the defaults for both options.

4. (Optional) If you have an Nvidia GPU and want to use the CUDA platform, download

CUDA 4.1 from http://developer.nvidia.com/cuda-toolkit-40. Be sure to install both the

drivers and toolkit. (This is only needed if you want to use the CUDA platform. Even

without it, you can still use the OpenCL platform to run GPU accelerated simulations.)

5. Before running OpenMM, you must add the OpenMM libraries (and CUDA libraries, if

you installed those) to your library path so your computer knows where to find them. You

can do this by typing

export DYLD_LIBRARY_PATH=/usr/local/openmm/lib:/usr/local/cuda/lib

This will affect only the particular Terminal window you type it into. If you want to run

OpenMM in another Terminal window, you must type the above command in the new

window.

6. Verify your installation by running the “testInstallation.py” script found in the “examples”

folder of your OpenMM installation. To run it, cd to the examples folder and type

python testInstallation.py

This script confirms that OpenMM is installed, checks whether GPU acceleration is available

(via that OpenCL and/or CUDA platforms), and verifies that all platforms produce

consistent results.

Important Note: Some Mac laptops have two GPUs, only one of which is capable of running

OpenMM. If you have a laptop, open the System Preferences and go to the Energy Saver

panel. On OS X 10.6, look for two radio buttons at the top labeled “Better battery life” and

“Higher performance”. Make sure that “Higher performance” is selected. On OS X 10.7,

there will be a single checkbox labeled “Automatic graphics switching”, which should be

12

disabled. Otherwise, trying to run OpenMM may produce an error. You will only see these

options if your laptop has two GPUs

2.2 Installing on Linux

1. Download the pre-compiled binary of OpenMM for Linux, then double click the .zip file to

expand it.

2. Make sure you have Python 2.6 or higher (earlier versions will not work) and gcc (we have

tested various versions between 4.0 and 4.4) installed on your computer. You can check

what versions are installed by typing python --version and gcc --version into a console

window.

3. In a console window, change to the OpenMM directory by typing

cd <openmm_directory>

where <openmm_directory> is the path to the OpenMM folder. Then run the install script

by typing

sudo ./install.sh

It will prompt you for an install location and the path to the python executable. Unless you

are certain you know what you are doing, accept the defaults for both options.

4. (Recommended) Install CUDA and/or OpenCL. You can run OpenMM without installing

either CUDA and/or OpenCL, but will not be able to take advantage of the accelerated

computational power of OpenMM without one or the other.

• If you have an Nvidia GPU, download CUDA 4.1 from

http://developer.nvidia.com/cuda-toolkit-40. Be sure to install both the drivers and

toolkit. OpenCL is included with the CUDA drivers.

• If you have an AMD GPU, or you want to use the OpenCL platform to run accelerated

simulations on the CPU, download the AMD APP SDK from

13

http://developer.amd.com/sdks/amdappsdk/downloads/pages/default.aspx.

OpenMM requires version 2.4 or later of the SDK and (if you want to use an AMD

GPU) version 11.7 or later of the Catalyst driver.

5. Before running OpenMM, you must add the OpenMM libraries (and CUDA/OpenCL

libraries, if you installed those) to your library path. You can do this by typing

export LD_LIBRARY_PATH=/usr/local/openmm/lib:/usr/local/cuda/lib

This will affect only the particular console window you type it into. If you want to run

OpenMM in another console window, you must type the above command in the new

window.

6. Verify your installation by running the “testInstallation.py” script found in the “examples”

folder of your OpenMM installation. To run it, cd to the examples folder and type

python testInstallation.py

This script confirms that OpenMM is installed, checks whether GPU acceleration is available

(via that OpenCL and/or CUDA platforms), and verifies that all platforms produce

consistent results.

2.3 Installing on Windows

1. Download the pre-compiled binary of OpenMM for Windows, then double click the .zip

file to expand it. Move the files to C:\Program Files\OpenMM. (On 64 bit Windows, use

C:\Program Files (x86)\OpenMM).

2. Make sure you have the 32-bit version of Python 2.6 or 2.7 (other versions will not work)

installed on your computer. To do this, launch the Python program (either the command

line version or the GUI version). The first line in the Python window will indicate the

version you have, e.g., Python 2.6.6, as well as whether you have a 32-bit or 64-bit version.

14

3. Double click the Python API Installer for your version of Python (2.6 or 2.7) to install the

Python components. (If you are running on Vista or Windows 7, a “Program Compatibility

Assistant” window may appear with the warning, “This program might not have installed

correctly.” This is just Microsoft trying to scare you. Click “This program installed correctly”

and ignore it.)

4. (Recommended) Install CUDA and/or OpenCL. You can run OpenMM without installing

either CUDA and/or OpenCL, but will not be able to take advantage of the accelerated

computational power of OpenMM without one or the other.

• If you have an Nvidia GPU, download CUDA 4.1 from

http://developer.nvidia.com/cuda-toolkit-40. Be sure to install both the drivers and

toolkit. For 64-bit machines, you should install the 64-bit driver, but download the

32-bit version of the toolkit since the OpenMM binary is 32-bit. OpenCL is included

with the CUDA drivers.

• If you have an AMD GPU, or you want to use the OpenCL platform to run accelerated

simulations on the CPU, download the AMD APP SDK from

http://developer.amd.com/sdks/amdappsdk/downloads/pages/default.aspx.

OpenMM requires version 2.4 or later of the SDK and (if you want to use an AMD

GPU) version 11.7 or later of the Catalyst driver.

5. Before running OpenMM, you must add the OpenMM libraries to your PATH

environment variable. You may also need to add the Python executable to your PATH.

a. To find out if the Python executable is already in your PATH, open a command

prompt window by clicking on Start -> Programs -> Accessories -> Command

Prompt. (On Windows 7, select Start -> All Programs -> Accessories -> Command

Prompt). Type

python

15

If you get an error message, such as ‘python’ is not recognized as an

internal or external command, operable program or batch file, then

you need to add Python to your PATH. To do so, locate it by typing

dir C:\py*

The files are typically located in a directory like C:\Python26 or C:\Python27. Remember

this location. You will need to enter it, along with the location of the OpenMM libraries,

later in this process.

b. Click on Start -> Control Panel -> System (On Windows 7, select Start -> Control

Panel -> System and Security -> System)

c. Click on the “Advanced” tab or the “Advanced system settings” link

d. Click “Environment Variables”

e. Under “System variables,” select the line for “Path” and click “Edit…”

f. Add C:\Program Files\OpenMM\lib and C:\Program Files\OpenMM\lib\plugins to

the “Variable value”. If you also need to add Python to your PATH, enter that

directory location here. Directory locations need to be separated by semi-colons (;).

6. Verify your installation by running the “testInstallation.py” script found in the “examples”

folder of your OpenMM installation. To run it, open a command window, cd to the examples

folder, and type

python testInstallation.py

This script confirms that OpenMM is installed, checks whether GPU acceleration is available

(via that OpenCL and/or CUDA platforms), and verifies that all platforms produce

consistent results.

16

3 Running Simulations

3.1 A First Example

Let’s begin with our first example of an OpenMM script. It loads a PDB file called

“input.pdb”, models it using the AMBER99SB force field and TIP3P water model, energy

minimizes it, simulates it for 10,000 steps with a Langevin integrator, and saves a frame to a

PDB file called “output.pdb” every 1000 time steps.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *

pdb = PDBFile('input.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond,

0.002*picoseconds)
simulation = Simulation(pdb.topology, system, integrator)
simulation.context.setPositions(pdb.positions)
simulation.minimizeEnergy()
simulation.reporters.append(PDBReporter('output.pdb', 1000))
simulation.step(10000)

Example 3.1

You can find this script in the “examples” folder of your OpenMM installation. It is called

“simulatePdb.py”. To execute it from a command line, go to your

terminal/console/command prompt window (see Chapter 2 on setting up the window to use

OpenMM). Navigate to the “examples” folder by typing

cd <examples_directory>

where the typical directory is /usr/local/openmm/examples on Linux and Mac machines

and “C:\Program Files\OpenMM\examples” on Windows machines.

17

Then type

python simulatePdb.py

You can name your own scripts whatever you want, but their names should end with “.py”.

Let’s go through the script line by line and see how it works.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *

These lines are just telling the Python interpreter about some libraries we will be using.

Don’t worry about exactly what they mean. Just include them at the start of all your scripts.

pdb = PDBFile('input.pdb')

This line loads the PDB file from disk. (The input.pdb file in the examples directory contains

the villin headpiece in explicit solvent.) More precisely, it creates a PDBFile object, passes

the file name input.pdb to it as an argument, and assigns the object to a variable called pdb.

The PDBFile object contains the information that was read from the file: the molecular

topology and atom positions. Your file need not be called “input.pdb”. Feel free to change

this line to specify any file you want. Make sure you include the single quotes around the file

name.

forcefield = ForceField('amber99sb.xml', 'tip3p.xml')

This line specifies the force field to use for the simulation. Force fields are defined by XML

files. Chapter 6 describes how to write these files, if you are interested in that sort of thing,

but you probably won’t need to. OpenMM includes XML files defining lots of standard force

fields (see section 3.3.1). In this case we load two of those files: amber99sb.xml, which

contains the AMBER99SB force field, and tip3p.xml, which contains the TIP3P water model.

The ForceField object is assigned to a variable called forcefield.

system = forcefield.createSystem(pdb.topology, nonbondedMethod=PME,
nonbondedCutoff=1*nanometer, constraints=HBonds)

18

This line combines the force field with the molecular topology loaded from the PDB file to

create a complete mathematical description of the system we want to simulate. (More

precisely, we invoke the ForceField object’s “createSystem” function. It creates a System

object, which we assign to the variable system.) It specifies some additional options about

how to do that: use particle mesh Ewald for the long range electrostatic interactions

(nonbondedMethod=PME), use a 1 nm cutoff for the direct space interactions

(nonbondedCutoff=1*nanometer), and constrain the length of all bonds that involve a

hydrogen atom (constraints=HBonds).

integrator = LangevinIntegrator(300*kelvin, 1/picosecond,
0.002*picoseconds)

This line creates the integrator to use for advancing the equations of motion. It specifies a

LangevinIntegrator, which (surprise!) performs Langevin dynamics, and assigns it to a

variable called integrator. It also specifies the values of three parameters that are specific

to Langevin dynamics: the simulation temperature (300K), the friction coefficient (1 ps-1),

and the step size (0.002 ps).

simulation = Simulation(pdb.topology, system, integrator)

This line combines the molecular topology, system, and integrator to begin a new

simulation. It creates a Simulation object and assigns it to a variable called simulation. A

Simulation object coordinates all the processes involved in running a simulation, such as

advancing time and writing output.

simulation.context.setPositions(pdb.positions)

This line specifies the initial atom positions for the simulation: in this case, the positions

that were loaded from the PDB file.

simulation.minimizeEnergy()

This line tells OpenMM to perform a local energy minimization. It is usually a good idea to

do this at the start of a simulation, since the coordinates in the PDB file might produce very

large forces.

19

simulation.reporters.append(PDBReporter('output.pdb', 1000))

This line creates a “reporter” to generate output during the simulation, and adds it to the

Simulation object’s list of reporters. A PDBReporter writes structures to a PDB file. We

specify that the output file should be called “output.pdb”, and that a structure should be

written every 1000 time steps.

simulation.step(10000)

Finally, we run the simulation, integrating the equations of motion for 10,000 time steps.

Once it is finished, you can load the PDB file into any program you want for analysis and

visualization (VMD, PyMol, AmberTools, etc.).

3.2 Using AMBER Files

OpenMM can build a system in two different ways. One option, as shown above, is to start

with a PDB file and then select a force field with which to model it. Alternatively, you can

use AmberTools to model your system. In that case, you provide a prmtop file and an inpcrd

file. OpenMM loads the files and creates a system from them. This is shown in the following

script. It can be found in OpenMM’s “examples” folder with the name “simulateAmber.py”.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *

prmtop = AmberPrmtopFile('input.prmtop')
inpcrd = AmberInpcrdFile('input.inpcrd')
system = prmtop.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)
integrator = LangevinIntegrator(300*kelvin, 1/picosecond,

0.002*picoseconds)
simulation = Simulation(prmtop.topology, system, integrator)
simulation.context.setPositions(inpcrd.positions)
simulation.minimizeEnergy()
simulation.reporters.append(PDBReporter('output.pdb', 1000))
simulation.step(10000)

Example 3.2

20

This script is very similar to the previous one. There are just a few significant differences:

prmtop = AmberPrmtopFile('input.prmtop')
inpcrd = AmberInpcrdFile('input.inpcrd')

In these lines, we load the prmtop file and inpcrd file. More precisely, we create

AmberPrmtopFile and AmberInpcrdFile objects and assign them to the variables prmtop

and inpcrd, respectively. As before, you can change these lines to specify any files you want.

Be sure to include the single quotes around the file names.

system = prmtop.createSystem(nonbondedMethod=PME,
nonbondedCutoff=1*nanometer, constraints=HBonds)

This line creates the system. In the previous section, we loaded the topology from a PDB file

and then had the force field create a system based on it. In this case, we don’t need a force

field; the prmtop file already contains the force field parameters, so it can create the system

directly.

simulation = Simulation(prmtop.topology, system, integrator)
simulation.context.setPositions(inpcrd.positions)

Notice that we now get the topology from the prmtop file and the atom positions from the

inpcrd file. In the previous section, both of these came from a PDB file, but AMBER puts the

topology and positions in separate files.

3.3 Simulation Parameters

In almost all cases, you can simply use one of the two scripts given above (the one in section

3.1 if you are starting from a PDB file, or the one in section 3.2 if you are starting from

AMBER prmtop and inpcrd files), then customize it to suit your needs. Now let’s consider

lots of ways you might want to customize it.

3.3.1 Force Fields

21

When you create a force field, you specify one or more XML files from which to load the

force field definition. Most often, there will be one file to define the main force field, and

possibly a second file to define the water model (either implicit or explicit). For example:

forcefield = ForceField('amber99sb.xml', 'tip3p.xml')

For the main force field, OpenMM provides the following options:

File Force Field

amber96.xml AMBER961

amber99sb.xml AMBER992 with modified backbone torsions3

amber99sbildn.xml AMBER99SB plus improved side chain torsions4

amber99sbnmr.xml AMBER99SB with modifications to fit NMR data5

amber03.xml AMBER036

amber10.xml AMBER10

amoeba2009.xml AMOEBA7

The AMBER files do not include parameters for water molecules. This allows you to

separately select which water model you want to use. For simulations that include explicit

water molecules, you should also specify one of the following files:

File Water Model

tip3p.xml TIP3P water model8

tip4pew.xml TIP4P-Ew water model9

tip5p.xml TIP5P water model10

spce.xml SPC/E water model11

22

For the AMOEBA force field, only one explicit water model is currently available and the

water parameters are included in the file amoeba2009.xml. Also the AMOEBA force field file

only includes the parameters for amino acids and ions; nucleic acids will be included in the

next release.

If you want to include an implicit solvation model, you can also specify one of the following

files:

File Implicit Solvation Model

amber96_obc.xml
GBSA-OBC solvation model12 for use with AMBER96 force

field

amber99_obc.xml GBSA-OBC solvation model for use with AMBER99 force fields

amber03_obc.xml GBSA-OBC solvation model for use with AMBER03 force field

amber10_obc.xml GBSA-OBC solvation model for use with AMBER10 force field

amoeba2009_gk.xml
Generalized Kirkwood solvation model13 for use with AMOEBA

force field

For example, to use the GBSA-OBC solvation model with the Amber99SB force field, you

would type:

forcefield = ForceField('amber99sb.xml', 'amber99_obc.xml')

If you are running a vacuum simulation, you do not need to specify a water model. The

following line specifies the AMBER10 force field and no water model. If you try to use it

with a PDB file that contains explicit water, it will produce an error since no water

parameters are defined:

forcefield = ForceField('amber10.xml')

3.3.2 AMBER Implicit Solvent

23

When creating a system from a prmtop file you do not specify force field files, so you need a

different way to tell it to use implicit solvent. This is done with the implicitSolvent

parameter:

system = prmtop.createSystem(implicitSolvent=OBC2)

OpenMM supports most of the implicit solvent models used by AMBER. Here are the

allowed values for implicitSolvent:

Value Meaning

None No implicit solvent is used.

HCT
Hawkins-Cramer-Truhlar GBSA model14 (corresponds to igb=1

in AMBER)

OBC1
Onufriev-Bashford-Case GBSA model12 using the GBOBCI

parameters (corresponds to igb=2 in AMBER).

OBC2

Onufriev-Bashford-Case GBSA model12 using the GBOBCII

parameters (corresponds to igb=5 in AMBER). This is the

same model used by the GBSA-OBC files described in section

3.3.1.

GBn GBn solvation model15 (corresponds to igb=7 in AMBER).

You can further control the solvation model by specifying the dielectric constants to use for

the solute and solvent:

system = prmtop.createSystem(implicitSolvent=OBC2, soluteDielectric=2.0,
solventDielectric=80.0)

If they are not specified, the solute and solvent dielectrics default to 1.0 and 78.5,

respectively. These values were chosen for consistency with AMBER, and are slightly

different from those used elsewhere in OpenMM: when building a system from a force field,

the solvent dielectric defaults to 78.3.

24

3.3.3 Nonbonded Interactions

When creating the system (either from a force field or a prmtop file), you can specify options

about how nonbonded interactions should be treated:

system = prmtop.createSystem(nonbondedMethod=PME,
nonbondedCutoff=1*nanometer)

The nonbondedMethod parameter can have any of the following values:

Value Meaning

NoCutoff No cutoff is applied.

CutoffNonPeriodic
The reaction field method is used to eliminate all interactions

beyond a cutoff distance. Not valid for AMOEBA.

CutoffPeriodic

The reaction field method is used to eliminate all interactions

beyond a cutoff distance. Periodic boundary conditions are

applied, so each atom interacts only with the nearest periodic

copy of every other atom. Not valid for AMOEBA.

Ewald

Periodic boundary conditions are applied. Ewald summation is

used to compute long range interactions. (This option is rarely

used, since PME is much faster for all but the smallest

systems.) Not valid for AMOEBA.

PME
Periodic boundary conditions are applied. The Particle Mesh

Ewald method is used to compute long range interactions.

When using any method other than NoCutoff, you should also specify a cutoff distance. Be

sure to specify units, as shown in the examples above. For example,

nonbondedCutoff=1.5*nanometers or nonbondedCutoff=12*angstroms are legal values.

When using Ewald or PME, you can optionally specify an error tolerance for the force

computation. For example:

25

system = prmtop.createSystem(nonbondedMethod=PME,
nonbondedCutoff=1*nanometer, ewaldErrorTolerance=0.00001)

The error tolerance is roughly equal to the fractional error in the forces due to truncating the

Ewald summation. If you do not specify it, a default value of 0.0005 is used.

3.3.3.1 Nonbonded Forces for AMOEBA

For the AMOEBA force field, the valid values for the nonbondedMethod are NoCutoff and

PME. The other nonbonded methods, CutoffNonPeriodic, CutoffPeriodic, and Ewald are

unavailable for this force field.

For implicit solvent runs using AMOEBA, only the nonbondedMethod option NoCutoff is

available.

3.3.3.1.1 Lennard-Jones Interaction Cutoff Value

In addition, for the AMOEBA force field a cutoff for the Lennard-Jones interaction

independent of the value used for the electrostatic interactions may be specified using the

keyword vdwCutoff.

system = forcefield.createSystem(nonbondedMethod=PME,
nonbondedCutoff=1*nanometer, ewaldErrorTolerance=0.00001,
vdwCutoff=1.2*nanometer)

If vdwCutoff is not specified, then the value of nonbondedCutoff is used for the Lennard-

Jones interactions.

3.3.3.1.2 Specifying the Polarization Method

OpenMM allows the setting of several other parameters particular to the AMOEBA force

field. The mutualInducedTargetEpsilon option allows you to specify the accuracy to

which the induced dipoles are calculated at each time step; the default value is 0.00001. The

polarization setting determines whether the calculation of the induced dipoles is

continued until the dipoles are self-consistent to within the tolerance specified by

mutualInducedTargetEpsilon or whether a quick estimate of the induced dipoles is used

instead. The first option corresponds to the polarization='mutual' setting and is the

26

default; the quick estimate option is given by polarization='direct' and in this case,

mutualInducedTargetEpsilon is ignored, if provided. Simulations using

polarization='direct' will be significantly faster than those with

polarization='mutual', but less accurate. Examples using the two options are given

below:

system = forcefield.createSystem(nonbondedMethod=PME,
nonbondedCutoff=1*nanometer,ewaldErrorTolerance=0.00001,
vdwCutoff=1.2*nanometer, mutualInducedTargetEpsilon=0.01)

system = forcefield.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer,ewaldErrorTolerance=0.00001,
vdwCutoff=1.2*nanometer, polarization ='direct')

3.3.3.1.3 Implicit Solvent and Solute Dielectrics

For implicit solvent simulations using the AMOEBA force field, the 'amoeba2009_gk.xml'

file should be included in the initialization of the force field:

forcefield = ForceField('amoeba2009.xml', 'amoeba2009_gk.xml')

Only the nonbondedMethod option NoCutoff is available for implicit solvent runs using

AMOEBA. In addition, the solvent and solute dielectric values can be specified for implicit

solvent simulations:

system=forcefield.createSystem(nonbondedMethod=NoCutoff,
soluteDielectric=2.0, solventDielectric=80.0)

The default values are 1.0 for the solute dielectric and 78.3 for the solvent dielectric.

3.3.4 Constraints

When creating the system (either from a force field or a prmtop file), you can optionally tell

OpenMM to constrain certain bond lengths and angles. For example,

system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=HBonds)

27

The constraints parameter can have any of the following values:

Value Meaning

None No constraints are applied. This is the default value.

HBonds The lengths of all bonds that involve a hydrogen atom are constrained.

AllBonds The lengths of all bonds are constrained.

HAngles
The lengths of all bonds are constrained. In addition, all angles of the form H-

X-H or H-O-X (where X is an arbitrary atom) are constrained.

The main reason to use constraints is that it allows one to use a larger integration time step.

With no constraints, one is typically limited to a time step of about 1 fs. With HBonds

constraints, this can be increased to about 2 fs. With HAngles, it can be further increased to

3.5 or 4 fs.

Regardless of the value of this parameter, OpenMM makes water molecules completely rigid,

constraining both their bond lengths and angles. You can disable this behavior with the

rigidWater parameter:

system = prmtop.createSystem(nonbondedMethod=NoCutoff, constraints=None,
rigidWater=False)

Be aware that flexible water may require you to further reduce the integration step size,

typically to about 0.5 fs.

3.3.5 Integrators

OpenMM offers a choice of several different integration methods. You select which one to

use by creating an integrator object of the appropriate type.

3.3.5.1 Langevin Integrator

In the examples of the previous sections, we used Langevin integration:

28

integrator = LangevinIntegrator(300*kelvin, 1/picosecond,
0.002*picoseconds)

The three parameter values in this line are the simulation temperature (300K), the friction

coefficient (1 ps-1), and the step size (0.002 ps). You are free to change these to whatever

values you want. Be sure to specify units on all values. For example, the step size could be

written either as 0.002*picoseconds or 2*femtoseconds. They are exactly equivalent.

3.3.5.2 Leapfrog Verlet Integrator

A leapfrog Verlet integrator can be used for running constant energy dynamics. The

command for this is:

integrator = VerletIntegrator(0.002*picoseconds)

The only option is the step size.

3.3.5.3 Brownian Integrator

Brownian (diffusive) dynamics can be used by specifying the following:

integrator = BrownianIntegrator(300*kelvin, 1/picosecond,
0.002*picoseconds)

The parameters are the same as for Langevin dynamics: temperature (300K), friction

coefficient (1 ps-1), and step size (0.002 ps).

3.3.5.4 Variable Time Step Langevin Integrator

A variable time step Langevin integrator continuously adjusts its step size to keep the

integration error below a specified tolerance. In some cases, this can allow you to use a

larger average step size than would be possible with a fixed step size integrator. It also is

very useful in cases where you do not know in advance what step size will be stable, such as

when first equilibrating a system. You create this integrator with the following command:

integrator = VariableLangevinIntegrator(300*kelvin, 1/picosecond, 0.001)

In place of a step size, you specify an integration error tolerance (0.001 in this example). It

is best not to think of this value as having any absolute meaning. Just think of it as an

29

adjustable parameter that affects the step size and integration accuracy. Smaller values will

produce a smaller average step size. You should try different values to find the largest one

that produces a trajectory sufficiently accurate for your purposes.

3.3.5.5 Variable Time Step Leapfrog Verlet Integrator

A variable time step leapfrog Verlet integrator works similarly to the variable time step

Langevin integrator in that it continuously adjusts its step size to keep the integration error

below a specified tolerance. The command for this integrator is:

integrator = VariableVerletIntegrator(0.001)

The parameter is the integration error tolerance (0.001), whose meaning is the same as for

the Langevin integrator.

3.3.6 Temperature Coupling

If you want to run a simulation at constant temperature, using a Langevin integrator (as

shown in the examples above) is usually the best way to do it. OpenMM does provide an

alternative, however: you can use a Verlet integrator, then add an Andersen thermostat to

your system to provide temperature coupling.

To do this, add a single line to the script as shown below. (The lines in grey are just for

context.)

...
system = prmtop.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)
system.addForce(AndersenThermostat(300*kelvin, 1/picosecond))
integrator = VerletIntegrator(0.002*picoseconds)
...

The two parameters of the Andersen thermostat are the temperature (300K) and collision

frequency (1 ps-1).

3.3.7 Pressure Coupling

30

All the examples so far have been constant volume simulations. If you want to run at

constant pressure instead, add a Monte Carlo barostat to your system. You do this exactly

the same way you added the Andersen thermostat in the previous section:

...
system = prmtop.createSystem(nonbondedMethod=PME,

nonbondedCutoff=1*nanometer, constraints=HBonds)
system.addForce(MonteCarloBarostat(1*bar, 300*kelvin))
integrator = LangevinIntegrator(300*kelvin, 1/picosecond,

0.002*picoseconds)
...

The parameters of the Monte Carlo barostat are the pressure (1 bar) and temperature

(300K). The barostat assumes the simulation is being run at constant temperature, but it

does not itself do anything to regulate the temperature. It is therefore critical that you

always use it along with a Langevin integrator or Andersen thermostat, and that you specify

the same temperature for both the barostat and the integrator or thermostat. Otherwise,

you will get incorrect results.

3.3.8 Energy Minimization

As seen in the examples, performing a local energy minimization takes a single line in the

script:

simulation.minimizeEnergy()

In most cases, that is all you need. There are two optional parameters you can specify if you

want further control over the minimization. First, you can specify a tolerance for when the

energy should be considered to have converged:

simulation.minimizeEnergy(tolerance=10*kilojoule/mole)

If you do not specify this parameter, a default tolerance of 1 kJ/mole is used.

Second, you can specify a maximum number of iterations:

simulation.minimizeEnergy(maxIterations=100)

31

The minimizer will exit once the specified number of iterations is reached, even if the energy

has not yet converged. If you do not specify this parameter, the minimizer will continue

until convergence is reached, no matter how many iterations it takes.

These options are independent. You can specify both if you want:

simulation.minimizeEnergy(tolerance=0.1*kilojoule/mole, maxIterations=500)

3.3.9 Removing Center of Mass Motion

By default, OpenMM removes all center of mass motion at every time step so the system as a

whole does not drift with time. This is almost always what you want. In rare situations, you

may want to allow the system to drift with time. You can do this by specifying the

removeCMMotion parameter when you create the System:

system = forcefield.createSystem(pdb.topology, nonbondedMethod=NoCutoff,
removeCMMotion=False)

3.3.10 Writing Trajectories

OpenMM can save simulation trajectories to disk in two formats: PDB and DCD. Both of

these are widely supported formats, so you should be able to read them into most analysis

and visualization programs.

To save a trajectory, just add a “reporter” to the simulation, as shown in the example scripts

above:

simulation.reporters.append(PDBReporter('output.pdb', 1000))

The two parameters of the PDBReporter are the output filename and how often (in number

of time steps) output structures should be written. To use DCD format, just replace

“PDBReporter” with “DCDReporter”. The parameters represent the same values:

32

simulation.reporters.append(DCDReporter('output.dcd', 1000))

3.3.11 Recording Other Data

In addition to saving a trajectory, you may want to record other information over the course

of a simulation, such as the potential energy or temperature. OpenMM provides a reporter

for this purpose also. Create a StateDataReporter and add it to the simulation:

simulation.reporters.append(StateDataReporter('data.csv', 1000, time=True,
kineticEnergy=True, potentialEnergy=True))

The first two parameters are the output filename and how often (in number of time steps)

values should be written. The remaining arguments specify what values should be written at

each report. The available options are step (the index of the current time step), time,

potentialEnergy, kineticEnergy, totalEnergy, temperature, volume (the volume of the

periodic box), and density (the total system mass divided by the volume of the periodic

box). One line is written to the file for each report containing the requested values. By

default the values are written in comma-separated-value (CSV) format. You can use the

separator parameter to choose a different separator. For example, the following line will

cause values to be separated by spaces instead of commas:

simulation.reporters.append(StateDataReporter('data.txt', 1000, time=True,
temperature=True, separator=' '))

33

4 Model Building and Editing

Sometimes you have a PDB file that needs some work before you can simulate it. Maybe it

doesn’t contain hydrogen atoms (which is common for structures determined by x-ray

crystallography), so you need to add them. Or perhaps you want to simulate the system in

explicit water, but the PDB file doesn’t contain water molecules. Or maybe it does contain

water molecules, but they contain the wrong number of interaction sites for the water model

you want to use. OpenMM’s Modeller class can fix problems such as these.

To use it, create a Modeller object, providing the initial Topology and atom positions. You

then can invoke various modelling functions on it. Each one modifies the system in some

way, creating a new Topology and list of positions. When you are all done, you can retrieve

them from the Modeller and use them as the starting point for your simulation:

...
pdb = PDBFile('input.pdb')
modeller = Modeller(pdb.topology, pdb.positions)
... Call some modelling functions here ...
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME)
simulation = Simulation(modeller.topology, system, integrator)
simulation.context.setPositions(modeller.positions)

Example 4.1

Now let’s consider the particular functions you can call.

4.1 Adding Hydrogens

Call the addHydrogens function to add missing hydrogen atoms:

modeller.addHydrogens(forcefield)

34

The force field is needed to determine the positions for the hydrogen atoms. If the system

already contains some hydrogens but is missing others, that is fine. The Modeller will

recognize the existing ones and figure out which ones need to be added.

Some residues can exist in different protonation states depending on the pH and on details

of the local environment. By default it assumes pH 7, but you can specify a different value:

modeller.addHydrogens(forcefield, pH=5.0)

For each residue, it selects the protonation state that is most common at the specified pH.

In the case of Cysteine residues, it also checks whether the residue participates in a disulfide

bond when selecting the state to use. Histidine has two different protonation states that are

equally likely at neutral pH. It therefore selects which one to use based on which will form a

better hydrogen bond.

If you want more control, it is possible to specify exactly which protonation state to use for

particular residues. For details, consult the API documentation for the Modeller class.

4.2 Adding Solvent

Call addSolvent to create a box of solvent (water and ions) around the model:

modeller.addSolvent(forcefield)

This constructs a box of water around the solute, ensuring that no water molecule comes

closer to any solute atom than the sum of their van der Waals radii. It also determines the

charge of the solute, and adds enough positive or negative ions to make the system neutral.

When called as shown above, addSolvent expects that periodic box dimensions were

specified in the PDB file, and it uses them as the size for the water box. If your PDB file does

not specify a box size, or if you want to use a different size, you can specify one:

modeller.addSolvent(forcefield, boxSize=Vec3(5.0, 3.5, 3.5)*nanometers)

35

This requests a 5 nm by 3.5 nm by 3.5 nm box. Another option is to specify a padding

distance:

modeller.addSolvent(forcefield, padding=1.0*nanometers)

This determines the largest size of the solute along any axis (x, y, or z). It then creates a

cubic box of width (solute size)+2*(padding). The above line guarantees that no part of the

solute comes closer than 1 nm to any edge of the box.

By default, addSolvent creates TIP3P water molecules, but it also supports other water

models:

modeller.addSolvent(forcefield, model='tip5p')

Allowed values for the model option are 'tip3p', 'spce', 'tip4pew', and 'tip5p'. Be sure to

include the single quotes around the value.

Another option is to add extra ion pairs to give a desired total ionic strength. For example:

modeller.addSolvent(forcefield, ionicStrength=0.1*molar)

This solvates the system with a salt solution whose ionic strength is 0.1 molar. Note that

when computing the ionic strength, it does not consider the ions that were added to

neutralize the solute. It assumes those are bound to the solute and do not contribute to the

bulk ionic strength.

By default, Na+ and Cl- ions are used, but you can specify different ones using the

positiveIon and negativeIon options. For example, this creates a potassium chloride

solution:

modeller.addSolvent(forcefield, ionicStrength=0.1*molar, positiveIon='K+')

36

Allowed values for positiveIon are 'Cs+', 'K+', 'Li+', 'Na+', and 'Rb+'. Allowed values for

negativeIon are 'Cl-', 'Br-', 'F-', and 'I-'. Be sure to include the single quotes around the

value. Also be aware some force fields do not include parameters for all of these ion types, so

you need to use types that are supported by your chosen force field.

4.3 Converting Between Water Models

Call convertWater to change between water models:

modeller.convertWater(model='tip4pew')

This identifies every water molecule in the system (regardless of what water model it

currently uses) and converts it to the requested water model. Allowed values for the model

option are 'tip3p', 'spce', 'tip4pew', and 'tip5p'.

4.4 Removing Water

Call deleteWater to remove all water molecules from the system:

modeller.deleteWater()

This is useful, for example, if you want to simulate it with implicit solvent. Be aware,

though, that this only removes water molecules, not ions or other small molecules that might

be considered “solvent”.

4.5 Saving The Results

Once you have finished editing your model, you can immediately use the resulting Topology

and atom positions as the input to a Simulation. If you plan to simulate it many times,

though, it is usually better to save the result to a new PDB file, then use that as the input for

the simulations. This avoids the cost of repeating the modeling operations at the start of

every simulation, and also ensures that all your simulations are really starting from exactly

the same structure.

37

The following example loads a PDB file, adds missing hydrogens, builds a solvent box

around it, performs an energy minimization, and saves the result to a new PDB file.

from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *

print('Loading...')
pdb = PDBFile('input.pdb')
forcefield = ForceField('amber99sb.xml', 'tip3p.xml')
modeller = Modeller(pdb.topology, pdb.positions)
print('Adding hydrogens...')
modeller.addHydrogens(forcefield)
print('Adding solvent...')
modeller.addSolvent(forcefield, model='tip3p', padding=1*nanometer)
print('Minimizing...')
system = forcefield.createSystem(modeller.topology, nonbondedMethod=PME)
integrator = VerletIntegrator(0.001*picoseconds)
simulation = Simulation(modeller.topology, system, integrator)
simulation.context.setPositions(modeller.positions)
simulation.minimizeEnergy(maxIterations=100)
print('Saving...')
positions = simulation.context.getState(getPositions=True).getPositions()
PDBFile.writeFile(simulation.topology, positions, open('output.pdb', 'w'))
print('Done')

Example 4.2

38

5 Advanced Examples

In the previous chapter, we looked at some basic scripts for running simulations and saw

lots of ways to customize them. If that is all you want to do—run straightforward molecular

simulations—you already know everything you need to know. Just use the example scripts

and customize them in the ways described in section 3.3.

OpenMM can do far more than that. Your script has the full OpenMM API at its disposal,

along with all the power of the Python language and libraries. In this chapter, we will

consider some examples that illustrate more advanced techniques. Remember that these are

still only examples; it would be impossible to give an exhaustive list of everything OpenMM

can do. Hopefully they will give you a sense of what is possible, and inspire you to

experiment further on your own.

Starting in this section, we will assume some knowledge of programming, as well as

familiarity with the OpenMM API. Consult the OpenMM Users Guide and API

documentation if you are uncertain about how something works. You can also use the

Python “help” command. For example,

help(Simulation)

will print detailed documentation on the Simulation class.

5.1 Simulated Annealing

Here is a very simple example of how to do simulated annealing. The following lines linearly

reduce the temperature from 300K to 0K in 100 increments, executing 1000 time steps at

each temperature:

39

...
simulation.context.setPositions(pdb.positions)
simulation.minimizeEnergy()
for i in range(100):
 integrator.setTemperature(3*(100-i)*kelvin)
 simulation.step(1000)

Example 5.1

This code needs very little explanation. The loop is executed 100 times. Each time through,

it adjusts the temperature of the LangevinIntegrator and then calls step(1000) to take 1000

time steps.

5.2 Applying an External Force to Particles: a Spherical

Container

In this example, we will simulate a non-periodic system contained inside a spherical

container with radius 2 nm. We implement the container by applying a harmonic potential

to every particle:

E(r) = 0 r ≤ 2

 100(r-2)2 r > 2

where r is the distance of the particle from the origin, measured in nm. We can easily do this

using OpenMM’s CustomExternalForce class. This class applies a force to some or all of the

particles in the system, where the energy is an arbitrary function of each particle’s (x, y, z)

coordinates. Here is the code to do it:

40

...
system = forcefield.createSystem(pdb.topology,

nonbondedMethod=CutoffNonPeriodic, nonbondedCutoff=1*nanometer,
constraints=None)

force = CustomExternalForce('100*max(0, r-2)^2; r=sqrt(x*x+y*y+z*z)')
system.addForce(force)
for i in range(system.getNumParticles()):
 force.addParticle(i, [])
integrator = LangevinIntegrator(300*kelvin, 91/picosecond,
0.002*picoseconds)
...

Example 5.2

The first thing it does is create a CustomExternalForce object and add it to the System. The

argument to CustomExternalForce is a mathematical expression specifying the energy of

each particle. This can be any function of x, y, and z you want. It also can depend on global

or per-particle parameters. A wide variety of restraints, steering forces, shearing forces, etc.

can be implemented with this method.

Next it must specify which particles to apply the force to. In this case, we want it to affect

every particle in the system, so we loop over them and call addParticle() once for each

one. The two arguments are the index of the particle to affect, and the list of per-particle

parameter values (an empty list in this case). If we had per-particle parameters, such as to

make the force stronger for some particles than for others, this is where we would specify

them.

Notice that we do all of this immediately after creating the System. That is not an arbitrary

choice. If you add new forces to a System, you must do so before creating the Simulation.

Once you create a Simulation, modifying the System will have no effect on that Simulation.

5.3 Extracting and Reporting Forces (and other data)

OpenMM provides reporters for two output formats: PDB and DCD. Both of those formats

store only positions, not velocities, forces, or other data. In this section, we create a new

reporter that outputs forces. This illustrates two important things: how to write a reporter,

and how to query the simulation for forces or other data.

41

Here is the definition of the ForceReporter class:

class ForceReporter(object):
 def __init__(self, file, reportInterval):
 self._out = open(file, 'w')
 self._reportInterval = reportInterval

 def __del__(self):
 self._out.close()

 def describeNextReport(self, simulation):
 steps = self._reportInterval -

simulation.currentStep%self._reportInterval
 return (steps, False, False, True, False)

 def report(self, simulation, state):
 forces =

state.getForces().value_in_unit(kilojoules/mole/nanometer)
 for f in forces:
 print >>self._out, f[0], f[1], f[2]

Example 5.3

The constructor and destructor are straightforward. The arguments to the constructor are

the output filename and the interval (in time steps) at which it should generate reports. It

opens the output file for writing and records the reporting interval. The destructor closes

the file.

We then have two methods that every reporter must implement: describeNextReport()

and report(). A Simulation object periodically calls describeNextReport() on each of its

reporters to find out when that reporter will next generate a report, and what information

will be needed to generate it. The return value should be a five element tuple, whose

elements are as follows:

• The number of time steps until the next report. We calculate this as (report

interval)-(current step)%(report interval). For example, if we want a report every

100 steps and the simulation is currently on step 530, we will return 100-(530%100)

= 70.

• Whether the next report will need particle positions.

• Whether the next report will need particle velocities.

• Whether the next report will need forces.

42

• Whether the next report will need energies.

When the time comes for the next scheduled report, the Simulation calls report() to

generate the report. The arguments are the Simulation object, and a State that is guaranteed

to contain all the information that was requested by describeNextReport(). A State object

contains a snapshot of information about the simulation, such as forces or particle positions.

We call getForces() to retrieve the forces and convert them to the units we want to output

(kJ/mole/nm). Then we loop over each value and write it to the file. To keep the example

simple, we just print the values in text format, one line per particle. In a real program, you

might choose a different output format.

Now that we have defined this class, we can use it exactly like any other reporter. For

example,

simulation.reporters.append(ForceReporter('forces.txt', 100))

will output forces to a file called “forces.txt” every 100 time steps.

5.4 Computing Energies

This example illustrates a different sort of analysis. Instead of running a simulation, assume

we have already identified a set of structures we are interested in. These structures are saved

in a set of PDB files. We want to loop over all the files in a directory, load them in one at a

time, and compute the potential energy of each one. Assume we have already created our

System and Simulation. The following lines perform the analysis:

import os
for file in os.listdir('structures'):
 pdb = PDBFile(os.path.join('structures', file))
 simulation.context.setPositions(pdb.positions)
 state = simulation.context.getState(getEnergy=True)
 print file, state.getPotentialEnergy()

Example 5.4

43

We use Python’s listdir() function to list all the files in the directory. We create a

PDBFile object for each one and call setPositions() on the Context to specify the particle

positions loaded from the PDB file. We then compute the energy by calling getState()

with the option getEnergy=True, and print it to the console along with the name of the file.

44

6 Creating Force Fields

OpenMM uses a simple XML file format to describe force fields. It includes many common

force fields, but you can also create your own. A force field can use all the standard

OpenMM force classes, as well as the very flexible custom force classes. You can even extend

the ForceField class to add support for completely new forces, such as ones defined in

plugins. This makes it a powerful tool for force field development.

6.1 Basic Concepts

Let’s start by considering how OpenMM defines a force field. There are a small number of

basic concepts to understand.

6.1.1 Atom Types and Atom Classes

Force field parameters are assigned to atoms based on their “atom types”. Atom types

should be the most specific identification of an atom that will ever be needed. Two atoms

should have the same type only if the force field will always treat them identically in every

way.

Multiple atom types can be grouped together into “atom classes”. In general, two types

should be in the same class if the force field usually (but not necessarily always) treats them

identically. For example, the α-carbon of an alanine residue will probably have a different

atom type than the α-carbon of a leucine residue, but both of them will probably have the

same atom class.

All force field parameters can be specified either by atom type or atom class. Classes exist as

a convenience to make force field definitions more compact. If necessary, you could define

everything in terms of atom types, but when many types all share the same parameters, it is

convenient to only have to specify them once.

45

6.1.2 Residue Templates

Types are assigned to atoms by matching residues to templates. A template specifies a list of

atoms, the type of each one, and the bonds between them. For each residue in the PDB file,

the force field searches its list of templates for one that has an identical set of atoms with

identical bonds between them. When matching templates, neither the order of the atoms

nor their names matter; it only cares about their elements and the set of bonds between

them. (The PDB file reader does care about names, of course, since it needs to figure out

which atom each line of the file corresponds to.)

6.1.3 Forces

Once a force field has defined its atom types and residue templates, it must define its force

field parameters. This generally involves one block of XML for each Force object that will be

added to the System. The details are different for each Force, but it generally consists of a

set of rules for adding interactions based on bonds and atom types or classes. For example,

when adding a HarmonicBondForce, the force field will loop over every pair of bonded

atoms, check their types and classes, and see if they match any of its rules. If so, it will call

addBond() on the HarmonicBondForce. If none of them match, it simply ignores that pair

and continues.

6.2 Writing the XML File

The root element of the XML file must be a <ForceField> tag:

<ForceField>

...

</ForceField>

The <ForceField> tag contains the following children:

• An <AtomTypes> tag containing the atom type definitions

• A <Residues> tag containing the residue template definitions

• Zero or more tags defining specific forces

46

The order of these tags does not matter. They are described in details below.

6.2.1 <AtomTypes>

The atom type definitions look like this:

<AtomTypes>
 <Type name="0" class="N" element="N" mass="14.00672"/>
 <Type name="1" class="H" element="H" mass="1.007947"/>
 <Type name="2" class="CT" element="C" mass="12.01078"/>
 ...
</AtomTypes>

There is one <Type> tag for each atom type. It specifies the name of the type, the name of

the class it belongs to, the symbol for its element, and its mass in amu. The names are

arbitrary strings: they need not be numbers, as in this example. The only requirement is

that all types have unique names. The classes are also arbitrary strings, and in general will

not be unique. Two types belong to the same class if they list the same value for the class

attribute.

6.2.2 <Residues>

The residue template definitions look like this:

<Residues>
 <Residue name="ACE">
 <Atom name="HH31" type="710"/>
 <Atom name="CH3" type="711"/>
 <Atom name="HH32" type="710"/>
 <Atom name="HH33" type="710"/>
 <Atom name="C" type="712"/>
 <Atom name="O" type="713"/>
 <Bond from="0" to="1"/>
 <Bond from="1" to="2"/>
 <Bond from="1" to="3"/>
 <Bond from="1" to="4"/>
 <Bond from="4" to="5"/>
 <ExternalBond from="4"/>
 </Residue>
 <Residue name="ALA">
 ...
 </Residue>
 ...
</Residues>

47

There is one <Residue> tag for each residue template. That in turn contains the following

tags:

• An <Atom> tag for each atom in the residue. This specifies the name of the atom and

its atom type.

• A <Bond> tag for each pair of atoms that are bonded to each other. The to and from

attributes are the indices of the two bonded atoms (starting from 0) in the order they

were listed. For example, <Bond from="1" to="3"/> describes a bond between

atom CH3 and atom HH33.

• An <ExternalBond> tag for each atom that will be bonded to an atom of a different

residue.

The <Residue> tag may also contain <VirtualSite> tags, as in the following example:

<Residue name="HOH">
 <Atom name="O" type="tip4pew-O"/>
 <Atom name="H1" type="tip4pew-H"/>
 <Atom name="H2" type="tip4pew-H"/>
 <Atom name="M" type="tip4pew-M"/>
 <VirtualSite type="average3" index="3" atom1="0" atom2="1" atom3="2"

weight1="0.786646558" weight2="0.106676721" weight3="0.106676721"/>
 <Bond from="0" to="1"/>
 <Bond from="0" to="2"/>
 </Residue>

Each <VirtualSite> tag indicates an atom in the residue that should be represented with a

virtual site. The type attribute may equal "average2", "average3", or "outOfPlane",

which correspond to the TwoParticleAverageSite, ThreeParticleAverageSite, and

OutOfPlaneSite classes respectively. The index attribute gives the index (starting from 0) of

the atom to represent with a virtual site. The atoms it is calculated based on are specified by

atom1, atom2, and (for virtual site classes that involve three atoms) atom3. The remaining

attributes are specific to the virtual site class, and specify the parameters for calculating the

site position. For a TwoParticleAverageSite, they are weight1 and weight2. For a

ThreeParticleAverageSite, they are weight1, weight2, and weight3. For an OutOfPlaneSite,

they are weight12, weight13, and weightCross.

48

6.2.3 <HarmonicBondForce>

To add a HarmonicBondForce to the System, include a tag that looks like this:

<HarmonicBondForce>
 <Bond class1="C" class2="C" length="0.1525" k="259408.0"/>
 <Bond class1="C" class2="CA" length="0.1409" k="392459.2"/>
 <Bond class1="C" class2="CB" length="0.1419" k="374049.6"/>
 ...
</HarmonicBondForce>

Every <Bond> tag defines a rule for creating harmonic bond interactions between atoms.

Each tag may identify the atoms either by type (using the attributes type1 and type2) or by

class (using the attributes class1 and class2). For every pair of bonded atoms, the force

field searches for a rule whose atom types or atom classes match the two atoms. If it finds

one, it calls addBond() on the HarmonicBondForce with the specified parameters.

Otherwise, it ignores that pair and continues. length is the equilibrium bond length in nm,

and k is the spring constant in kJ/mol/nm2.

6.2.4 <HarmonicAngleForce>

To add a HarmonicAngleForce to the System, include a tag that looks like this:

<HarmonicAngleForce>
 <Angle class1="C" class2="C" class3="O" angle="2.094" k="669.44"/>
 <Angle class1="C" class2="C" class3="OH" angle="2.094" k="669.44"/>
 <Angle class1="CA" class2="C" class3="CA" angle="2.094" k="527.184"/>
 ...
</HarmonicAngleForce>

Every <Angle> tag defines a rule for creating harmonic angle interactions between triplets of

atoms. Each tag may identify the atoms either by type (using the attributes type1, type2,

...) or by class (using the attributes class1, class2, ...). The force field identifies every set of

three atoms in the system where the first is bonded to the second, and the second to the

third. For each one, it searches for a rule whose atom types or atom classes match the three

atoms. If it finds one, it calls addAngle() on the HarmonicAngleForce with the specified

parameters. Otherwise, it ignores that set and continues. angle is the equilibrium angle in

radians, and k is the spring constant in kJ/mol/radian2.

49

6.2.5 <PeriodicTorsionForce>

To add a PeriodicTorsionForce to the System, include a tag that looks like this:

<PeriodicTorsionForce>
 <Proper class1="HC" class2="CT" class3="CT" class4="CT" periodicity1="3"

phase1="0.0" k1="0.66944"/>
 <Proper class1="HC" class2="CT" class3="CT" class4="HC" periodicity1="3"

phase1="0.0" k1="0.6276"/>
 ...
 <Improper class1="N" class2="C" class3="CT" class4="O" periodicity1="2"

phase1="3.14159265359" k1="4.6024"/>
 <Improper class1="N" class2="C" class3="CT" class4="H" periodicity1="2"

phase1="3.14159265359" k1="4.6024"/>
 ...
</PeriodicTorsionForce>

Every child tag defines a rule for creating periodic torsion interactions between sets of four

atoms. Each tag may identify the atoms either by type (using the attributes type1, type2,

...) or by class (using the attributes class1, class2, ...).

The force field recognizes two different types of torsions: proper and improper. A proper

torsion involves four atoms that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4. An

improper torsion involves a central atom and three others that are bonded to it: atoms 2, 3,

and 4 are all bonded to atom 1. The force field begins by identifying every set of atoms in the

system of each of these types. For each one, it searches for a rule whose atom types or atom

classes match the four atoms. If it finds one, it calls addTorsion() on the

PeriodicTorsionForce with the specified parameters. Otherwise, it ignores that set and

continues. periodicity1 is the periodicity of the torsion, phase1 is the phase offset in

radians, and k1 is the force constant in kJ/mol.

Each torsion definition can specify multiple periodic torsion terms to add to its atoms. To

add a second one, just add three more attributes: periodicity2, phase2, and k2. You can

have as many terms as you want. Here is an example of a rule that adds three torsion terms

to its atoms:

<Proper class1="CT" class2="CT" class3="CT" class4="CT" periodicity1="3"
phase1="0.0" k1="0.75312" periodicity2="2" phase2="3.14159265359"
k2="1.046" periodicity3="1" phase3="3.14159265359" k3="0.8368"/>

50

You can also use wildcards when defining torsions. To do this, simply leave the type or class

name for an atom empty. That will cause it to match any atom. For example, the following

definition will match any sequence of atoms where the second atom has class OS and the

third has class P:

<Proper class1="" class2="OS" class3="P" class4="" periodicity1="3"
phase1="0.0" k1="1.046"/>

6.2.6 <RBTorsionForce>

To add an RBTorsionForce to the System, include a tag that looks like this:

<RBTorsionForce>
 <Proper class1="CT" class2="CT" class3="OS" class4="CT" c0="2.439272"

c1="4.807416" c2="-0.8368" c3="-6.409888" c4="0" c5="0" />
 <Proper class1="C" class2="N" class3="CT" class4="C" c0="10.46" c1="-

3.34720" c2="-7.1128" c3="0" c4="0" c5="0" />
 ...
 <Improper class1="N" class2="C" class3="CT" class4="O" c0="0.8368" c1="0"

c2="-2.76144" c3="0" c4="3.3472" c5="0" />
 <Improper class1="N" class2="C" class3="CT" class4="H" c0="29.288" c1="-

8.368" c2="-20.92" c3="0" c4="0" c5="0" />
 ...
</RBTorsionForce>

Every child tag defines a rule for creating Ryckaert-Bellemans torsion interactions between

sets of four atoms. Each tag may identify the atoms either by type (using the attributes

type1, type2, ...) or by class (using the attributes class1, class2, ...).

The force field recognizes two different types of torsions: proper and improper. A proper

torsion involves four atoms that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4. An

improper torsion involves a central atom and three others that are bonded to it: atoms 2, 3,

and 4 are all bonded to atom 1. The force field begins by identifying every set of atoms in the

system of each of these types. For each one, it searches for a rule whose atom types or atom

classes match the four atoms. If it finds one, it calls addTorsion() on the RBTorsionForce

with the specified parameters. Otherwise, it ignores that set and continues. The attributes

c0 through c5 are the coefficients of the terms in the Ryckaert-Bellemans force expression.

You can also use wildcards when defining torsions. To do this, simply leave the type or class

name for an atom empty. That will cause it to match any atom. For example, the following

51

definition will match any sequence of atoms where the second atom has class OS and the

third has class P:

<Proper class1="" class2="OS" class3="P" class4="" c0="2.439272"
c1="4.807416" c2="-0.8368" c3="-6.409888" c4="0" c5="0" />

6.2.7 <CMAPTorsionForce>

To add a CMAPTorsionForce to the System, include a tag that looks like this:

<CMAPTorsionForce>
 <Map>
 0.0 0.809 0.951 0.309
 -0.587 -1.0 -0.587 0.309
 0.951 0.809 0.0 -0.809
 -0.951 -0.309 0.587 1.0
 </Map>
 <Torsion map="0" class1="CT" class2="CT" class3="C" class4="N"

class5="CT"/>
 <Torsion map="0" class1="N" class2="CT" class3="C" class4="N"

class5="CT"/>
 ...
</CMAPTorsionForce>

Each <Map> tag defines an energy correction map. Its content is the list of energy values in

kJ/mole, listed in the correct order for CMAPTorsionForce’s addMap() method and

separated by white space. See the API documentation for details. The size of the map is

determined from the number of energy values.

Each <Torsion> tag defines a rule for creating CMAP torsion interactions between sets of

five atoms. The tag may identify the atoms either by type (using the attributes type1, type2,

...) or by class (using the attributes class1, class2, ...). The force field identifies every set of

five atoms that are bonded in sequence: 1 to 2, 2 to 3, 3 to 4, and 4 to 5. For each one, it

searches for a rule whose atom types or atom classes match the five atoms. If it finds one, it

calls addTorsion() on the CMAPTorsionForce with the specified parameters. Otherwise, it

ignores that set and continues. The first torsion is defined by the sequence of atoms 1-2-3-4,

and the second one by atoms 2-3-4-5. map is the index of the map to use, starting from 0, in

the order they are listed in the file.

52

You can also use wildcards when defining torsions. To do this, simply leave the type or class

name for an atom empty. That will cause it to match any atom. For example, the following

definition will match any sequence of five atoms where the middle three have classes CT, C,

and N respectively:

<Torsion map="0" class1="" class2="CT" class3="C" class4="N" class5=""/>

6.2.8 <NonbondedForce>

To add a NonbondedForce to the System, include a tag that looks like this:

<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
 <Atom type="0" charge="-0.4157" sigma="0.32499" epsilon="0.71128"/>
 <Atom type="1" charge="0.2719" sigma="0.10690" epsilon="0.06568"/>
 <Atom type="2" charge="0.0337" sigma="0.33996" epsilon="0.45772"/>
 ...
</NonbondedForce>

The <NonbondedForce> tag has two attributes coulomb14scale and lj14scale that specify

the scale factors between pairs of atoms separated by three bonds. After setting the

nonbonded parameters for all atoms, the force field calls createExceptionsFromBonds()

on the NonbondedForce, passing in these scale factors as arguments.

Each <Atom> tag specifies the nonbonded parameters for one atom type (specified with the

type attribute) or atom class (specified with the class attribute). It is fine to mix these two

methods, having some tags specify a type and others specify a class. However you do it, you

must make sure that a unique set of parameters is defined for every atom type. charge is

measured in units of the proton charge, sigma is in nm, and epsilon is in kJ/mole.

6.2.9 <GBSAOBCForce>

To add a GBSAOBCForce to the System, include a tag that looks like this:

<GBSAOBCForce>
 <Atom type="0" charge="-0.4157" radius="0.1706" scale="0.79"/>
 <Atom type="1" charge="0.2719" radius="0.115" scale="0.85"/>
 <Atom type="2" charge="0.0337" radius="0.19" scale="0.72"/>
 ...
</GBSAOBCForce>

53

Each <Atom> tag specifies the OBC parameters for one atom type (specified with the type

attribute) or atom class (specified with the class attribute). It is fine to mix these two

methods, having some tags specify a type and others specify a class. However you do it, you

must make sure that a unique set of parameters is defined for every atom type. charge is

measured in units of the proton charge, radius is the GBSA radius in nm, and scale is the

OBC scaling factor.

6.2.10 <CustomBondForce>

To add a CustomBondForce to the System, include a tag that looks like this:

<CustomBondForce energy="scale*k*(r-r0)^2">
 <GlobalParameter name="scale" defaultValue="0.5"/>
 <PerBondParameter name="k"/>
 <PerBondParameter name="r0"/>
 <Bond class1="OW" class2="HW" r0="0.09572" k="462750.4"/>
 <Bond class1="HW" class2="HW" r0="0.15136" k="462750.4"/>
 <Bond class1="C" class2="C" r0="0.1525" k="259408.0"/>
 ...
</CustomBondForce>

The energy expression for the CustomBondForce is specified by the energy attribute. This is

a mathematical expression that gives the energy of each bond as a function of its length r. It

also may depend on an arbitrary list of global or per-bond parameters. Use a

<GlobalParameter> tag to define a global parameter, and a <PerBondParameter> tag to

define a per-bond parameter.

Every <Bond> tag defines a rule for creating custom bond interactions between atoms. Each

tag may identify the atoms either by type (using the attributes type1 and type2) or by class

(using the attributes class1 and class2). For every pair of bonded atoms, the force field

searches for a rule whose atom types or atom classes match the two atoms. If it finds one, it

calls addBond() on the CustomBondForce. Otherwise, it ignores that pair and continues.

The remaining attributes are the values to use for the per-bond parameters. All per-bond

parameters must be specified for every <Bond> tag, and the attribute name must match the

name of the parameter. For instance, if there is a per-bond parameter with the name “k”,

then every <Bond> tag must include an attribute called k.

54

6.2.11 <CustomAngleForce>

To add a CustomAngleForce to the System, include a tag that looks like this:

<CustomAngleForce energy="scale*k*(theta-theta0)^2">
 <GlobalParameter name="scale" defaultValue="0.5"/>
 <PerAngleParameter name="k"/>
 <PerAngleParameter name=" theta0"/>
 <Angle class1="HW" class2="OW" class3="HW" theta0="1.824218" k="836.8"/>
 <Angle class1="HW" class2="HW" class3="OW" theta0="2.229483" k="0.0"/>
 <Angle class1="C" class2="C" class3="O" theta0="2.094395" k="669.44"/>
 ...
</CustomAngleForce>

The energy expression for the CustomAngleForce is specified by the energy attribute. This

is a mathematical expression that gives the energy of each angle as a function of the angle

theta. It also may depend on an arbitrary list of global or per-angle parameters. Use a

<GlobalParameter> tag to define a global parameter, and a <PerAngleParameter> tag to

define a per-angle parameter.

Every <Angle> tag defines a rule for creating custom angle interactions between triplets of

atoms. Each tag may identify the atoms either by type (using the attributes type1, type2,

...) or by class (using the attributes class1, class2, ...). The force field identifies every set of

three atoms in the system where the first is bonded to the second, and the second to the

third. For each one, it searches for a rule whose atom types or atom classes match the three

atoms. If it finds one, it calls addAngle() on the CustomAngleForce. Otherwise, it ignores

that set and continues. The remaining attributes are the values to use for the per-angle

parameters. All per-angle parameters must be specified for every <Angle> tag, and the

attribute name must match the name of the parameter. For instance, if there is a per-angle

parameter with the name “k”, then every <Angle> tag must include an attribute called k.

6.2.12 <CustomTorsionForce>

To add a CustomTorsionForce to the System, include a tag that looks like this:

<CustomTorsionForce energy="scale*k*(1+cos(per*theta-phase))">
 <GlobalParameter name="scale" defaultValue="1"/>
 <PerTorsionParameter name="k"/>
 <PerTorsionParameter name="per"/>
 <PerTorsionParameter name="phase"/>

55

 <Proper class1="HC" class2="CT" class3="CT" class4="CT" per="3"
phase="0.0" k="0.66944"/>

 <Proper class1="HC" class2="CT" class3="CT" class4="HC" per="3"
phase="0.0" k="0.6276"/>

 ...
 <Improper class1="N" class2="C" class3="CT" class4="O" per="2"

phase="3.14159265359" k="4.6024"/>
 <Improper class1="N" class2="C" class3="CT" class4="H" per="2"

phase="3.14159265359" k="4.6024"/>
 ...
</CustomTorsionForce>

The energy expression for the CustomTorsionForce is specified by the energy attribute.

This is a mathematical expression that gives the energy of each torsion as a function of the

angle theta. It also may depend on an arbitrary list of global or per-torsion parameters. Use

a <GlobalParameter> tag to define a global parameter, and a <PerTorsionParameter> tag

to define a per-torsion parameter.

Every child tag defines a rule for creating custom torsion interactions between sets of four

atoms. Each tag may identify the atoms either by type (using the attributes type1, type2,

...) or by class (using the attributes class1, class2, ...).

The force field recognizes two different types of torsions: proper and improper. A proper

torsion involves four atoms that are bonded in sequence: 1 to 2, 2 to 3, and 3 to 4. An

improper torsion involves a central atom and three others that are bonded to it: atoms 2, 3,

and 4 are all bonded to atom 1. The force field begins by identifying every set of atoms in the

system of each of these types. For each one, it searches for a rule whose atom types or atom

classes match the four atoms. If it finds one, it calls addTorsion() on the

CustomTorsionForce with the specified parameters. Otherwise, it ignores that set and

continues. The remaining attributes are the values to use for the per-torsion parameters.

Every <Torsion> tag must include one attribute for every per-torsion parameter, and the

attribute name must match the name of the parameter.

You can also use wildcards when defining torsions. To do this, simply leave the type or class

name for an atom empty. That will cause it to match any atom. For example, the following

definition will match any sequence of atoms where the second atom has class OS and the

third has class P:

56

<Proper class1="" class2="OS" class3="P" class4="" per="3" phase="0.0"
k="0.66944"/>

6.2.13 <CustomGBForce>

To add a CustomGBForce to the System, include a tag that looks like this:

<CustomGBForce>
 <GlobalParameter name="solventDielectric" defaultValue="78.3"/>
 <GlobalParameter name="soluteDielectric" defaultValue="1"/>
 <PerParticleParameter name="charge"/>
 <PerParticleParameter name="radius"/>
 <PerParticleParameter name="scale"/>
 <ComputedValue name="I" type="ParticlePairNoExclusions">
 step(r+sr2-or1)*0.5*(1/L-1/U+0.25*(1/U^2-1/L^2)*(r-

sr2*sr2/r)+0.5*log(L/U)/r+C); U=r+sr2; C=2*(1/or1-1/L)*step(sr2-r-
or1); L=max(or1, D); D=abs(r-sr2); sr2 = scale2*or2; or1 = radius1-
0.009; or2 = radius2-0.009

 </ComputedValue>
 <ComputedValue name="B" type="SingleParticle">
 1/(1/or-tanh(1*psi-0.8*psi^2+4.85*psi^3)/radius); psi=I*or; or=radius-

0.009
 </ComputedValue>
 <EnergyTerm type="SingleParticle">
 28.3919551*(radius+0.14)^2*(radius/B)^6-

0.5*138.935456*(1/soluteDielectric-1/solventDielectric)*charge^2/B
 </EnergyTerm>
 <EnergyTerm type="ParticlePair">
 -138.935456*(1/soluteDielectric-1/solventDielectric)*charge1*charge2/f;

f=sqrt(r^2+B1*B2*exp(-r^2/(4*B1*B2)))
 </EnergyTerm>
 <Atom type="0" charge="-0.4157" radius="0.1706" scale="0.79"/>
 <Atom type="1" charge="0.2719" radius="0.115" scale="0.85"/>
 <Atom type="2" charge="0.0337" radius="0.19" scale="0.72"/>
 ...
</CustomGBForce>

The above (rather complicated) example defines a generalized Born model that is equivalent

to GBSAOBCForce. The definition consists of a set of computed values (defined by

<ComputedValue> tags) and energy terms (defined by <EnergyTerm> tags), each of which is

evaluated according to a mathematical expression. See the API documentation for details.

The expressions may depend on an arbitrary list of global or per-atom parameters. Use a

<GlobalParameter> tag to define a global parameter, and a <PerAtomParameter> tag to

define a per-atom parameter.

57

Each <Atom> tag specifies the parameters for one atom type (specified with the type

attribute) or atom class (specified with the class attribute). It is fine to mix these two

methods, having some tags specify a type and others specify a class. However you do it, you

must make sure that a unique set of parameters is defined for every atom type. The

remaining attributes are the values to use for the per-atom parameters. All per-atom

parameters must be specified for every <Atom> tag, and the attribute name must match the

name of the parameter. For instance, if there is a per-atom parameter with the name

“radius”, then every <Atom> tag must include an attribute called radius.

CustomGBForce also allows you to define tabulated functions. To define a function, include

a <Function> tag inside the <CustomGBForce> tag:

<Function name="myfn" min="-5" max="5">
0.983674857694 -0.980096396266 -0.975743130031 -0.970451936613 -
0.964027580076 -0.956237458128 -0.946806012846 -0.935409070603 -
0.921668554406 -0.905148253645 -0.885351648202 -0.861723159313 -
0.833654607012 -0.800499021761 -0.761594155956 -0.716297870199 -
0.664036770268 -0.604367777117 -0.537049566998 -0.46211715726 -
0.379948962255 -0.291312612452 -0.197375320225 -0.099667994625 0.0
0.099667994625 0.197375320225 0.291312612452 0.379948962255
0.46211715726 0.537049566998 0.604367777117 0.664036770268
0.716297870199 0.761594155956 0.800499021761 0.833654607012
0.861723159313 0.885351648202 0.905148253645 0.921668554406
0.935409070603 0.946806012846 0.956237458128 0.964027580076
0.970451936613 0.975743130031 0.980096396266 0.983674857694
0.986614298151 0.989027402201

</Function>

The tag’s attributes define the name of the function and the range of values for which it is

defined. The tabulated values are listed inside the body of the tag, with successive values

separated by white space. Again, see the API documentation for more details.

6.2.14 Writing Custom Expressions

The custom forces described in this chapter involve user defined algebraic expressions.

These expressions are specified as character strings, and may involve a variety of standard

operators and mathematical functions.

The following operators are supported: + (add), - (subtract), * (multiply), / (divide), and ^

(power). Parentheses “(“and “)” may be used for grouping.

58

The following standard functions are supported: sqrt, exp, log, sin, cos, sec, csc, tan, cot,

asin, acos, atan, sinh, cosh, tanh, erf, erfc, min, max, abs, step. step(x) = 0 if x < 0, 1

otherwise. Some custom forces allow additional functions to be defined from tabulated

values.

Numbers may be given in either decimal or exponential form. All of the following are valid

numbers: 5, -3.1, 1e6, and 3.12e-2.

The variables that may appear in expressions are specified in the API documentation for

each force class. In addition, an expression may be followed by definitions for intermediate

values that appear in the expression. A semicolon “;” is used as a delimiter between value

definitions. For example, the expression

a^2+a*b+b^2; a=a1+a2; b=b1+b2

is exactly equivalent to

(a1+a2)^2+(a1+a2)*(b1+b2)+(b1+b2)^2

The definition of an intermediate value may itself involve other intermediate values. All uses

of a value must appear before that value’s definition.

6.3 Using Multiple Files

If multiple XML files are specified when a ForceField is created, their definitions are

combined as follows.

• A file may refer to atom types and classes that it defines, as well as those defined in

previous files. It may not refer to ones defined in later files. This means that the

order in which files are listed when calling the ForceField constructor is potentially

significant.

59

• Forces that involve per-atom parameters (such as NonbondedForce or

GBSAOBCForce) require parameter values to be defined for every atom type. It does

not matter which file those types are defined in. For example, files that define

explicit water models generally define a small number of atom types, as well as

nonbonded parameters for those types. In contrast, files that define implicit solvent

models do not define any new atom types, but provide parameters for all the atom

types that were defined in the main force field file.

• For other forces, the files are effectively independent. For example, if two files each

include a <HarmonicBondForce> tag, bonds will be created based on the rules in the

first file, and then more bonds will be created based on the rules in the second file.

This means you could potentially end up with multiple bonds between a single pair of

atoms.

6.4 Extending ForceField

The ForceField class is designed to be modular and extensible. This means you can add

support for entirely new force types, such as ones implemented with plugins.

For every force class, there is a “generator” class that parses the corresponding XML tag,

then creates Force objects and adds them to the System. ForceField maintains a map of tag

names to generator classes. When a ForceField is created, it scans through the XML files,

looks up the generator class for each tag, and asks that class to create a generator object

based on it. Then, when you call createSystem(), it loops over each of its generators and

asks each one to create its Force object. Adding a new Force type therefore is simply a

matter of creating a new generator class and adding it to ForceField’s map.

The generator class must define two methods. First, it needs a static method with the

following signature to parse the XML tag and create the generator:

@staticmethod
def parseElement(element, forcefield):

60

element is the XML tag (an xml.etree.ElementTree.Element object) and forcefield is the

ForceField being created. This method should create a generator and add it to the

ForceField:

generator = MyForceGenerator()
forcefield._forces.append(generator)

It then should parse the information contained in the XML tag and configure the generator

based on it.

Second, it must define a method with the following signature:

def createForce(self, system, data, nonbondedMethod, nonbondedCutoff,

args):

When createSystem() is called on the ForceField, it first creates the System object, then

loops over each of its generators and calls createForce() on each one. This method should

create the Force object and add it to the System. data is a ForceField._SystemData object

containing information about the System being created (atom types, bonds, angles, etc.),

system is the System object, and the remaining arguments are values that were passed to

createSystem(). To get a better idea of how this works, look at the existing generator

classes in forcefield.py.

Finally, you need to register your class by adding it to ForceField’s map:

forcefield.parsers['MyForce'] = MyForceGenerator.parseElement

The key is the XML tag name, and the value is the static method to use for parsing it.

Now you can simply create a ForceField object as usual. If an XML file contains a

<MyForce> tag, it will be recognized and processed correctly.

61

7 Bibliography

1. Kollman, P. A.; Dixon, R.; Cornell, W.; Fox, T.; Chipot, C.; Pohorille, A., Computer
Simulation of Biomolecular Systems. Wilkinson, A.; Weiner, P.; van Gunsteren, W. F., Eds.
Elsevier: 1997; Vol. 3, pp 83-96.
2. Wang, J.; Cieplak, P.; Kollman, P. A., How well does a restrained electrostatic
potential (RESP) model perform in calculating conformational energies of organic and
biological molecules? Journal of Computational Chemistry 2000, 21, 1049-1074.
3. Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C.,
Comparison of multiple Amber force fields and development of improved protein backbone
parameters. Proteins 2006, 65, 712-725.
4. Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.; Dror, R. O.;
Shaw, D. E., Improved side-chain torsion potentials for the Amber ff99SB protein force field.
Proteins 2010, 78, 1950-1958.
5. Li, D. W.; Bru! schweiler, R., NMR-based protein potentials. Angewandte Chemie
International Edition 2010, 49, 6778-6780.
6. Duan, Y. W., C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak,
P.; Luo, R.; Lee, T., A point-charge force field for molecular mechanics simulations of
proteins based on condensed-phase quantum mechanical calculations. Journal of
Computational Chemistry 2003, 24, 1999-2012.
7. Ren, P.; Ponder, J. W., A Consistent Treatment of Inter- and Intramolecular
Polarization in Molecular Mechanics Calculations. Journal of Computational Chemistry
2002, 23, 1497-1506.
8. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L.,
Comparison of simple potential functions for simulating liquid water. Journal of Chemical
Physics 1983, 79, 926-935.
9. Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.;
Head-Gordon, T., Development of an improved four-site water model for biomolecular
simulations: TIP4P-Ew. Journal of Chemical Physics 2004, 120, 9665-9678.
10. Mahoney, M. W.; Jorgensen, W. L., A five-site model for liquid water and the
reproduction of the density anomaly by rigid, nonpolarizable potential functions. Journal of
Chemical Physics 2000, 112, 8910-8922.
11. Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P., The missing term in effective
pair potentials. Journal of Physical Chemistry 1987, 91, 6269-6271.
12. Onufriev, A.; Bashford, D.; Case, D. A., Exploring protein native states and large-
scale conformational changes with a modified generalized born model. Proteins 2004, 55
(22), 383-394.
13. Schnieders, M. J.; Ponder, J. W., Polarizable Atomic Multipole Solutes in a
Generalized Kirkwood Continuum. Journal of Chemical Theory and Computation 2007, 3,
2083-2097.
14. Hawkins, G. D.; Cramer, C. J.; Truhlar, D. G., Pairwise solute descreening of solute
charges from a dielectric medium. Chemical Physics Letters 1995, 246 (1-2), 122-129.

62

15. Mongan, J.; Simmerling, C.; McCammon, J. A.; Case, D. A.; Onufriev, A., Generalized
Born model with a simple, robust molecular volume correction. Journal of Chemical Theory
and Computation 2007, 3 (1), 156-169.

